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LETTER TO THE EDITOR 

Global phase diagrams for charge transport in two 
dimensions 

C A Liitkent 
Department of Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK 

Received 19 April 1993 . 

Abs- It is suggested that it is not necessary to solve the full non-perlurbative problem 
of two-dimensional charge transport in order to obtain global information about the phase 
and flow diagrams for the quantum Hall system and its relatives. It is argued that the 
effective quantum field theories encoding the macroscopic properties of these systems are 
invariant under a symmetry contained in the modular group. New phase and flow 
diagrams are obtained which exhibit a hierarchy of only odd or only even phases (Hall 
plateaus). The Kramers-Wannier-like symmetry determines the exact location of all 
renormalization group fixed pints ,  which appear to be in agreement with available scaling 
experiments on the quantum Hall system. It also explains the observed ‘super- 
universality’, of the delocalization exponent. 

Partition functions may be invariant under two different types of transformations: 
symmetries of the action (or Hamiltonian) and symmetries of the parameter space. 
We are perhaps most familiar with the former, which include spacetime invariances as 
well as gauge symmetries. It is the purpose.of this letter to focus on the latter and show 
how such symmetries can be used to elicit global information about the phase diagram 
and renomialization group (RG) flow of the system. 

The motivation for these considerations comes from an attempt [l] to understand 
the ‘macroscopic’ properties of the subtle and resilient quantum Hall system. The 
main result is a new phase and R G ~ ~ O W  diagram for this system, which unlike the one 
proposed earlier [l] can only be valid in the strong magnetic field limit, where even 
denominator plateaus are forbidden. In spite of the great difference between these 
diagrams, it will be clear from the group-theoretical considerations below that they 
are closely related. The global phase and flow diagrams presented here encode various 
aspects of electron transport in two dimensions, and may account for all the peculiar 
universality properties which have been observed in this system. 

Transport coefficients or response functions are macroscopic quantities appearing 
in the effective action, which encodes only the low energy properties of the system.~At 
large scales they parametrize the space on which the renormalization group acts, and 
it is the phase and fixed point structure of this parameter (conductivity or resistivity) 
space which is explored when resistances are measured. Since these are global 
properties of the effective field theory, it would appear that a theoretical determi- 
nation of these data is a hopeless non-perturbative task. However, in [l] a way around 
this impasse was suggested. The main idea is that the observation of only a single 
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Figure 1. Phase and flow diagram associated with themodular group r(l), showing both 
‘odd’ and ‘even’ phases. 

scaling exponent for all available transitions indicates the existence of an infinite 
global discrete parameter space symmetry, analogous to the Kramers-Wannier (KW) 
duality [2] exhibited by most spin systems. This may be sufficient to determine the 
geometry of the phase and R G - ~ ~ O W  diagram, including the exact location of all 
renormalization group fixed points. Using only the most rudimentary experimental 
data as input, it is surprisingly easy to make a ‘phenomenological ansatz’ for the form 
of this symmetry. 

It appears to be very difficult to prove that such a symmetry follows from the 
microphysics [3], but because it leads to a wealth of experimentally accessible 
predictions. such an ansatz is far from vacuous. Indeed, not only does it correlate all 
scaling data and suggest new experiments, because the symmetries we have in mind 
are not easily satisfied they should also be very useful for pinning down the correct 
effective quantum field theory [3]. 

In the following we shall study two-parameter flows constrained by subgroups of 
the modular group r(1) = SL(2, h). These groups act on the complex upper half plane 
W={ue@lZmu>O}. The modular group is generated by any two non-commuting 
fractional linear transformations acting on W. It is convenient and conventional to 
choose T:u-tu+l andRu+-l /u .  

Consider first the main group-theoretical facts [4, 51 determining the tree-like 
structure of the modular invariant phase diagram shown in figure 1, which first 
appeared in the context of coupled clock models [6]. The modular group is the free 
product of &(S) and h3(TS). This implies that there are two types of ‘elliptic’ fixed 
points on the tree, of order two (S2= 1) and three ((TS)’= l), which are located at i 
and j=exp(zi/3), respectively, and at images of these points under the group. The 
fixed points of order two are natural candidates for delocalization fixed points (@), 
and this also fits well with scaling data on the transition between many integer levels 
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111. In addition, there are two other types of fixed points not located on the self-dual 
tree. Strictly speaking, they do not lie in the parameter space W at all, but on its 
compactification W=H U 69 U {i-}. The rationals 69 are ‘parabolic’ fixed points of 
r(l), and are to be identified with the attractive RG fixed points (@ in- figure 1) 
corresponding to Hall plateaus. The ‘hyperbolic’ fixed point at im , which is also an 
attractor in this case, seems to be associated with some kind of metallic or supercon- 
ducting phase. 

From the fact that the phases of the diagram in figure 1 only touch the real axis at 
fractional values; it is immediately clear why r(1) is a promising group for the 
quantum Hall problem: if U can be identified with the compkx@ed conductivity 
u=uxy+iun, then U, will be forced by the phase-diagram alone to take fractional 
values when U, vanishes. Note that in this effective field theoretical description no 
distinction is made between integer and fractional phases, and we cannot have one 
without the other. 

It is the purpose of this letter to explore the properties of phase and flow diagrams 
associated with subgroups of r(1). One of the motivations for this is that the phase 
and flow diagram invariant under the full modular group shown in figure 1 contains 
both ‘even’ and ‘odd‘ phases, while the experimentspredominmtly turn up,only ‘odd‘ 
phases. A phase is uniquely characterized by the value of the conductivity at the 
attractive fixed point to which it is attached (i.e. for which it is the basin of attraction 
or universality class): U@ = u,=p/q E 69. If the denominator q is odd (even) the phase 
is called odd (even). Since experiments are turning up’even fractions at an increasing 
rate it is encouraging that they are  not disallowed by the family of infinite discrete 
symmetries that we are considering. On the other hand, we should be able to ‘switch 
them off in a very strong magnetic field (B), since in this case the electron spins are 
completely polarized so that the spin degree of freedom is frozen out. This means that 
the spatial part of the many-body wave-function must be completely anti-symmetric, 
and consequently, by a standard argument due to Laughlin 171, only odd phases can 
appear in such a system. We shall see that this is exactly what happens if the B+ m 
limit breaks r(1) to a subgroup rT(2), to bediscussed next. 

Since we want to retain only half the phases, but still cover the conductivity plane, 
we should lobk for a smaller group than r(1). Consider therefore the congruence 
subgroups of r(1) at level two [4]. These all Lie between r(1) and r(2), where 

. ,  

.~ 

r(N) +E S ~ ( 2 . Z ) l y =  I (mod N)] (1) 
is called the principal congruence group at level N .  Obviously r(l)=SL(2,Z). A 
congruence group is a group that contains T(N) for some finite value of N .  At level 
two there are only four congruence groups in addition to r(2). The three of interest to 
us are defined as follows: 

r,(2) ={y 6 r(1) I y = I, R(mod, 2)} (2) 

r,(2) = {T; SPS} rs(2)’={s, PI r,(2) =I+, PI:  j3) 

where R = T , S ,  W ( W = T S q .  Each of these groups is generated by two non- 
commuting generators, which we can choose as follows: 

To see what these symmetries have to do with the quantum Hall system, note thatwe 
are interested in symmetries which partition the rationals into the various equivalence 
classes which appear in the quantum Hall experiments. Clearly r(1) maps any rational 
number into any other, which is why every rational‘number labels one of the phases in 

, i  .~ , .  
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the r(1)-invariant phase diagram (figure 1). There are, however, other ways to 
tesselate the upper half plane, which is reflected in the way rcr(1) treats the 
rationals. 

The special significance of the principal congruence group r(2) is that it respects 
the parity of the fraction p l q ~ Q ,  i.e. if p is even (odd) then so is its image under 
yfr(2), and similarly for q. Thus r(2) splits the rationals into three equivalence 
classes, which, if we let ‘0’ denote ‘even’ and ‘1’ denote ‘odd’, are conveniently 
labelled by 011 =0, 111 = 1 and 1/0= a. (010 is ill-defined, i.e. there is no 010 class 
because two even numbers are not relatively prime.) The congruence groups r&), 
rs(2) and r&), being intermediate between r(1) and r(2), splits the rationals into 
just two equivalence classes each: because rA2) contains Ti t  maps 0 to 1, because 
rs(2) contains S it maps 0 to m , and because r42) contains W it maps 1 to . In 
short, these groups partition the rationals plq E Q as follows: 

. 

r(1): [O-l-m}=Q 

r&): io- 1, -)={q EZZ + I} U Iq ~ 2 . 7 ~ )  

rd2): IO- m ,I) = {pq E 2z) U { p q  EZZ+ 1) 
rd2): {0,1- m } = { p  EZ+ 1) U {p ~ 2 b +  1) 

r(2): { o , ~  m } = ~ , ~  U Q,,, U Q,,~. (4) 
This result makes it clear that it is r42) which is of interest in the quantum Hall 

problem. It is the main proposition of this letter that the effective theory of the spin- 
polarized quantum Hall system is rr(2)-invariant. 

Notice that rr(2) is the group implicitly assumed in the so-called ‘hierarchy 
generating mechanism’ [7-91, which was invented in order to account for the observed 
fractions (see also [lOJ). To see this recall that if a ground state with ‘filling factor’ v 
appears, then the particle-hole conjugate state with filling factor 1 - v,  as well as the 
quasi-particle condensate with filling factor v/(2v + 1) should also be ground states of 
the quantum Hall system. Since v is essentially the Hall conductivity on the plateaus, 
we see that these are fractional linear transformations on U restricted to act only on 
the real axis. The first transformation is TJ=JT, where J: U+ -d  is a so-called ‘outer 
automorphism’ of r(1). J is in fact the only automorphism of r(1) not in r(l), and 
since J is rather trivial we wiU continue to suppress it here. The other transformation is 
the inverse of SPS, which together with T generates rT(2), according to (3). 

Having identified the subgroup of the modular group of interest in the quantum 
Hall problem, we now wish to know how the phase and tiow diagram is modified. 
Since the elliptic fixed points of r(1) of order three (the bifurcation points) are not 
fixed points of any of its subgroups, only the full modular group will give rise to a tree- 
shaped phase diagram (figure 1). Furthermore some, but not all, elliptic fixed points of 
order two also disappear when subgroups are considered. So we still have both 
attractive fixed points, at the odd fractions, say, as well as saddle points 8. There must 
then also be repulsive fixed points, and they can no longer be the bifurcation points. 
The only remaining candidates are the even parabolic fixed points, which are the ones 
wedset out to eliminate from the spectrum of attractors anyway. This leads to the 
phase and flow diagram in figure 2. 

The easiest way to construct the phase and flow diagrams associated with other 
groups is to study the RG potentials for the flows. This gives a geometrical verification 
of the diagrams in figures 1 and 2, and generates distinct hierarchies that may be of 
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interest for ‘relatives’ of the quantum Hall system 1111, including the frustrated 
Heisenberg antiferromagnet and high-temperature superconductivity. Lee and Fisher 
[12], for example, construct a ‘bosonic’ hierarchy of anyon superconducting states, 
which appears to be generated by r&). Due to space limitations these ideas must be 
discussed elsewhere [13]. 

We should now ask whether the new diagram in figure 2 is contradicted by the 
scaling experiments reported in [14] and [U]. Clearly the surprising ‘super- 
universality’ of delodiat ion fixed points (@), which was the original motivation for 
considering Kw-like symmetries [l], is still maintained: the surviving elliptic fixed 
points of order two have not moved and are still related by symmetries. Only data for 
integer delocalization transitions are available so far, and they appear to coincide with 
the values 

I 

o B = ( n + j  +; (n=O, 1,2 , .  . .) (5) 

predicted by modular invariance. 
However, the absence of bifurcation points from figure 2 means that the data 

reported in [U] on the location of so-called ‘mobility fixed points’ must be reinter- 
preted. The experiments in 1151 tried to locate the largest value of ox associated with 
the fractional phases p/q = k/(2k+ 1) (k= 1,2,3,4,  (5)). In [l] it was suggested that 
these be identified with the points at which the I‘(1)-tree bifurcates to give room for 
the new phases. The imaginary parts of these points, which appear at 

4k2-2k+3 V% 
(6)  04 = 

2(4k2+3) +2(4k2+3) 

are surprisingly close to the observed values .”;” reported in [15], see table 1. 

Fwre2. Phase and flow diagram associated with the subgroup r42) of the modula 
group, showing only ‘odd‘ phases. 
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Table 1. Experimental data em on the location of mobility fixed points, obtained in 113 
by studying temperature driven flows in the a-plane, compared with the imaginary part a; 
of various points associated with the appearance of new phases in the r(l)-invariant 
(figure 1) and rd2)-invariant (figure 2) ffow diagrams. The errors are estimated in [16]. 

113 O.lSiO.03 0.1ooO 0.1237 0.1250 
2 5  0.055iO.01 0.0294 0.0456 0.0625 
317 0.025i0.005 0.0135 0.0221 0.0417 
419 0.013fO.Cd3 0.0377 0.0129 0.0313 
5/11 0.01 i? O.M)50 0.0084 0.0250 

The rd2)-invariant ‘bush‘ shown in figure 2 clearly does not admit such an 
interpretation. Instead, it seems natural to compare the data with the dissipative 
conductivity at the ‘apex’ of these phases, which is given by = l/Sk. Since this 
‘bush‘ is an offspring of the modular invariant ‘tree’, these points cannot be very far 
removed from the bifurcation points. Indeed, we see from table 1 that it is hard to 
distinguish between us and us* for small k, for which the data presumably are also 
most reliable. For larger values of k 05 appears to be in better agreement with the 
data, but in view of the large uncertainties in these experiments? usa also cannot be 
ruled out. 

For completeness, and comparison with future experiments, table 1 also contains 
the corresponding information about the location of the delocalization fixed points 
associated with these fractional phases: 

4kz --2k+ 1 i 
U%= 2(4k2 + 1) + 2(4k2 + 1)’ (7) 

These points are rd2)-images of the integer delocalization point 1/2+i/2, and are 
most easily located by using the algorithm described in [l]. It is clear that better 
experiments are needed in order to map out the phase diagram and fixed point 
structure of the quantum Hall system. 

After this work was completed two preprints appeared where conclusions which 
seem to be similar to those reported here and in [I] have been reached in a different 
way. Halperin et a1 [I71 display a phase diagram which is topologically similar to figure 
1, while Kivelson er a1 [IS] have found a phase diagram in the resistivity plane 
fp = p,  + ipm) which appears to be similar to figure 2. Because p = S(u), and S is not in 
J?d2), the comparison with [U] is not immediate. The few phases appearing in their 
diagram do in fact have the same topology as the S-transform of figure 2, but no fixed 
point or RG flow structure was suggested. Also, the detailed geometry differs, 
presumably because of an arbitrary normalization in their approach. 

It is a pleasure to thank P Aspinwall, G Ross, C Series and T Skjelbred for useful 
discussions. This work was supported by the Norwegian Research Council for Science 
and Humanities (NAVF) and the British Science and Engineering Research Council 
(SERC). 

tBecause the authors of [U] daim to have performed the experiments at ax”= 112, there are probably 
significant systematic errors in addition to the 20% ermr bars quoted in table 1. 
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